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WAVE I M P A C T  ON T H E  C E N T E R  OF AN E U L E R  B E A M  

A. A. Korobkin  UDC 532.58 

The problem of a symmetric wave impact on the Euler beam is solved by the normal modes 
method. The liquid is supposed to be ideal and incompressible. The initial stage of impact when 
hydrodynamic loads are very high and the beam is wetted only partially is considered. The flow 
of a liquid and the size of the wetted part of the body are determined by the Wagner approach 
with a simultaneous calculation of the beam deflection. The specific features of the developed 
numerical algorithm are demonstrated and the criterion of its stability is specified. In addition to 
a direct solution of the problem, two approximate approaches within the framework of which the 
dimension of the contact region is found ignoring the deformations of the plate are considered. 

I n t r o d u c t i o n .  The plane unsteady problem of an impact by an ideal incompressible liquid on an 
elastic plate of finite length is considered. At the initial moment (t' = 0), a weakly curved boundary of the 
liquid touches the plate in its center (z ~ = 0 and y~ = 0), and the velocity of all liquid particles is equal to V 
and is directed along the normal toward the undeformed surface of the plate (Fig. la). The initial position of 
the free boundary is assumed to be symmetric about the Oy ~ axis. The lower side of the plate is plane, and 
the transverse cross section of the plate does not depend on the longitudinal coordinate z ~. The maximum 
thickness of the plate h is assumed to be much less than its length 2L and the width of the plane side b. 
The plate is simply supported at its ends, and its deflection is governed by the Euler beam equation. Only 
the bending stresses in the longitudinal direction are taken into consideration in the Euler model. The shear 
stresses and the stresses in the transverse direction are assumed to be small. For t' > 0, the liquid strikes the 
plate. The impact stage, during which hydrodynamic loads are very significant, finishes at the moment when 
the plate is completely wetted. For a weakly curved liquid boundary, which corresponds to the impact on a 
catamaran wetdeck by a sufficiently long wave, the impact stage is short. 

The hydrodynamic loads on impact increase rapidly with time and then damp. To estimate the duration 
of the impact stage, we note that  the initial shape of the free boundary near its top can be approximated by 
the parabolic contour y' = -z~2/(2R), where R is the radius of curvature of the undisturbed liquid boundary 
at the origin of the Cartesian coordinate system. The dimensional variables are primed. For a weakly curved 
free boundary, the ratio ~ = L / R  is small. Ignoring the deformation of the liquid boundary on impact and 
assuming the vertical wave velocity to be constant, we expect that the plate will be completely wetted at the 
moment 7"i, when -L2/ (2R)  + VT1 = 0. In the impact stage, the quantity T = L2/(RV) is used as the scale 
of time. The actual duration of the stage is less owing to an additional rise of the free boundary toward the 
plate (Fig. lb) but it is of the same order as T. 

The distinguishing feature of the problem is that  the elastic plate is deformed by hydrodynamic loads, 
the region of application of which -c ' ( t ' )  < z' < c~(t ') extends with time, and their amplitude itself depends 
on the beam deflection. The problem is coupled: in the general case, the liquid flow and the deformations of 
a body should be determined simultaneously. At the same time, it is necessary to determine the dimension 
of the wetted part of the body, which is the important characteristic of the process. The calculation of the 
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function d(t ')  entails significant difficulties and usually is approximate in character [1]. In the present work, 
the method of simultaneously calculating the hydrodynamic (the velocity field and the pressure distribution), 
elastic (bending stresses and deflections), and geometric (the dimension of the contact region and the shape 
of the free boundary) characteristics of the impact of elastic bodies on a liquid is proposed. 

It is required to determine the deformation of the elastic plate, the distribution of bending stresses, 
the pressure distribution along the contact region, and the position of the contact points under the following 
assumptions: 

1) The liquid is ideal and incompressible; 
2) The liquid flow is plane, potential, and symmetric about the Oy' axis; 
3) The initial radius of curvature of the free boundary at the contact point R is much larger, and the 

maximum thickness of the plate h is much less than its length 2L; 
4) The plate is governed by the Euler beam equation, and its end points are simply supported; 
5) The external mass forces and the forces of surface tension are absent. 
The scales of variation of the hydrodynamic variables are chosen the same as for an undeformable 

plate: L is the scale of length, V is the scale of velocity, V L  is the scale of velocity potential, p V L / T  is the 
scale of pressure, where p is the density of the liquid and the scale of t ime T has been determined above. The 
scale of beam deflection W is not fixed beforehand. The instructions on its choice will be given below. The 
scale of bending stresses in the plate is taken to be equal to h E W / L  2, where E is Young's modulus. In what 
follows, the dimensionless variables, which are not primed, are used. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  The problem is conveniently analyzed with the use of a moving 
deformed coordinate system x l , y l  such that z l  = z and yl = y + e(x2/2 - t) and to present the velocity 
potential ~p(z,y,t)  in the form ~p(z,y,t) = y - t2/2 + ~pl(z l ,y l , t ) ,  where ~pl(z l ,y l , t )  is the potential of 
the perturbed motion of the liquid on impact. In the new coordinate system, the initial position of the free 
boundary corresponds to the horizontal line yl = 0, and the position of the elastic plate is described by the 
equation yl = eyB(x l ,  t), where yB(z l ,  t) = z~/2 + row(z1, t) - t and m = W/(Le) ,  and the function w(z,  t) 
sets the amplitude of the elastic deflection of the plate in a point with the z coordinate at the moment t. 
The equation of motion of the fluid and the boundary conditions acquire a more complicated form; however, 
it is easy to verify that  all the new and nonlinear terms in these equations have the coefficient e. This 
allows us to ignore them formally under the condition that e << 1. The discarded terms have the order 
O(e) almost everywhere, except the periphery of the contact region, where it is necessary to construct an 
"internal" asymptotic expansion of the solution with allowance for nonlinear effects. With the same accuracy, 
the boundary conditions at the liquid boundary can be linearized and imposed on its unperturbed level yl = 0. 
In the first approximation, as ~ --* 0 the motion of the liquid is described almost everywhere by the Laplace 
equation for the velocity potential ~1 (zl, yl, t) in the lower half-plane yl < 0, and the deformations of the 
plate by the Euler equation relative to the beam deflection w(x~, t) [2]. In the symmetric case, the position 
of the contact points is set by a single function c(t). Despite the fact that the equations of motion and the 
boundary conditions are linearized, the problem remains nonlinear, because the quantity c(t) is unknown 
beforehand. Precisely the last circumstance determines difficulties which arise in a study of the impact of 
elastic bodies on the liquid. Below, the subscript 1 is omitted. Since the map (x ,y )  ~ ( x l , y l )  is identical 
with accuracy O(e), within which the problem is solved, the absence of the subscript should not bring about 
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the misunderstanding. As r --* 0, the identity of the map in the principal order means that  in the collision 
of weakly curved surfaces, most important is the magnitude of the gap between them at the initial moment. 
rather than particular forms of each surface [3]. 

The formulation of the problem in dimensionless variables has the form 

02w ~w 
- - ~ -  + /~zz4  = p(z,0,t) ( Iz l< 1, t > 0 ) ;  (1) 

w = w ~  = 0 ( z  = + 1 ,  t >t 0); (2) 

w = w,  = 0 (Ixl ~< 1, t = 0); (3) 

p = - ~ ,  (y ~ o); (4) 

~ =  + ~y~ = 0 (y < 0); (5) 

v = 0 [y = 0, Ixl > c(t)]; (6) 

vy  = - 1  + ~ , ( ~ , t )  [y = 0, I~1 < cCt)]; (7) 

~o --} 0 (x2 + y2 _.} oo). (S) 

Here p(z, y, t) is the pressure of the liquid; the distribution of the bending stresses in the beam a(x,  t) is taken 
to be linear in its thickness and is determined in dimensionless variables by the equality tr(z, t) = zw~(z ,  t)/2, 
where the variable z changes over the beam thickness, z = - 1  corresponds to the lower wetted side, and z = +1 
to its upper side in the largest-thickness sites. The upper side of the beam is compressed for w~z(x, t) > 0 
and stretches for wtz(x,  t) < 0. The formula for the pressure (4) follows from the linearized Cauchy-Lagrange 
integral. The dimensionless parameters a and/~ in the beam equation (1) and ,e in the condition in the contact 
region (7) are as follows: 

Ms E J  R W  
a = -~ae ,  1~ = pL(RV)2ee, oe = L2 , (9) 

where MS and J is, respectively, the brain mass per unit length and the moment of inertia of the beam cross 
section, which are referred to the width of the lower plane side of the beam b. It is convenient to choose the 
scale of beam deflection W, so that  one of the parameters in (9) is equal to and the other two do not exceed 
unity. For example, in the  case considered in [4] for the aluminum wetdeck of a catamaran,  it is assumed that 
L = 75 era, E = 7 . 1 0 7  N / m  2, J = 1.106 - 10 - s m  s , MS = 36.6 kg /m 2, V = 6 m/sec,  p = 1000 kg/m 3, 
R = 40 m, and h = 12 cm. We have ~[a = 20.5 and ~[a = 0.3672, and hence/3 < a < ~e with any choice of 
the scale W. We choose W such that  ee = 1, and hence W = L2/R. Here a = 4.88.10 -2 and/~ = 1.8.10 -2. 
It is seen that  the parameters a and ~ are small; they have the same order of smallness as the linearization 
parameter e, which is equal to 0.01875 in this case. This points to the possibility of further simplification of 
system (1)-(8) by the methods of asymptotic analysis. Under different impact conditions, the three parameters 
can be of the order of unity, and problem (1)-(8) will be, therefore, considered below under the assumption 
that a = O(1), ~ = O(1), and ~e = O(1). 

Problem (1)-(8) should be supplemented by two conditions, which have the character of one-sided 
inequalities. The first condition is employed to determine the function c(t) and implies that  the liquid particles 
cannot penetrate an elastic plate. In the symmetrical case, this condition leads to the simple transcendental 
equation [5] 

x/2 

/ yb[c(t) sinO, t] dO = O, (10) 
0 

where the function yb(x, t) describes the shape of the elastic surface in a moving deformed coordinate system. 
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It, our case, yb(x,t) = x2/2 -- t + aew(x,t), and Eq. (10) gives 

r/2 

= J / 4  + (2a~/~r) ] w[c(t)sina, t]da. (11) t 
0 

It is possible to show that  Eq. (10) is equivalent to the well-known Wagner condition [6] in the problem of an 
impact from a blunt body on the free surface of a liquid. However, the last gives rise to a singular integral 
equation relative to the function c(t). The solution of this equation entails serious computational difficulties 
even for the case of an undeformable body. Therefore, the dimension of the wetted part of the rigid surface is 
usually determined approximately within the framework of the linearized model (1)-(8) [1]. 

The second condition consists in that the pressure in the contact region cannot drop to the limiting 
value p,. In the points of the contact region, where the pressure drops to the limiting value, the liquid detaches 
from the elastic surface with the formation of cavities filled with the liquid vapor. Cavitational phenomena 
in the water impact on elastic bodies were really observed in experiments [7] and can change significantly 
the distribution of hydrodynamic loads and the character of deformations. However, the solution of impact 
problems in the presence of unknown <<internal, free boundaries faces great difficulties. In view of this, 
another approach is proposed, within the framework of which the condition of the admissible lower value of 
the pressure is omitted, but the value of the pressure in the contact region is controlled during computations. 
It is assumed that  p. = 0. If the pressure is negative on the major part of the contact region, the subsequent 
computation results are considered inadequate. This approach is based on the assumption that immediately 
after the moment of impact, the pressure in the contact region is positive and can become negative later 
only owing to the plate flexibility. The positions of the points of negative pressure and the velocities of the 
expansion of the negative-pressure regions is of doubtless interest and can be useful for the construction of 
complicated models that  incorporate cavitational phenomena. 

N o r m a l  M o d e s  M e t h o d .  A numerical study of problem (1)-(8) and (11) is based on the normal 
modes method. Within the framework of this method, the beam deflection is sought in the form 

Oo 

w ( x , t )  = a . C t ) r  (12 )  
n----I 

where r  are the nontrivial solutions of the homogeneous boundary-value problem 

d 4 ~b n 4 
dz 4 = Anr ( -1  < z < I), (13) 

d2r 
r = = 0 = + 1 )  (14 )  

(A~ are the corresponding eigenvalues). The eigenfunctions Cn(x) satisfy the orthogonality condition 

1 

/ 42,~(x)r dx = $,m, (15) 

where •m -- 0 for n ~ m and ~ , ,  = 1. Generally, the form of the functions r  is cumbersome; however, 
under a symmetrical external load and with the simply supported ends of the beam Eqs. (13)-(15) produce 
the simple relations r  = cos &,x and ha = 7r(n - 1/2). It is convenient to take the generalized coordinates 
of the modes a,( t ) ,  where n -- 1, 2 , . . . ,  as the new unknown functions and to express other quantities via 
them. 

On the section of the liquid boundary -1  < x < 1, y = 0, which corresponds to the contact region, 
the velocity potential and the pressure distribution can be presented as follows: 

OO 

= b . ( t ) r  = - (16 )  
n = l  n = l  
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bn(t)= f c2(x,O,t)~b,~(x)dx , (17) 
-~(t) 

as a consequence of (4), (6), and (15). The dot denotes the derivative in time. To find the dependences b,,(t) 
on the generalized coordinate an(t), where m, n = I, 2 , . . . ,  we consider the hydrodynamic  part of problem 
(1)-(8) separately. 

We define the new, harmonic in the lower half-plane, functions T, ,(x ,y ,c)  as the solutions of the 
boundary-value problem 

0 7  + ~ = 0 (y < 0); (18) 

~.  = 0 [u = 0, Ixl > c(t)]; (19) 

oy = r  [y = 0, I~l < c(t)]; (20) 

~ --, 0 (~2 + y2 __, oo) (21) 

with integrable singularities of the first derivatives near the points of change of the form of the boundary 
condition, x = =t=c. Here n = 0, 1 ,2 , . . .  and r -- 1. Taking into account tha t  if the function c(t) is known, 
problems (1)-(8) and (18)-(21) are linear, and comparing the boundary conditions (7) and (20), we obtain 

oo co 

r bm(t)=-fm(c)§ (22) 
u=l n=l 

Here 
c r 

--- / ~O(T,,O,c)r .T, S h i n ( C )  -" ] ~ou(;r,O,c)r ( 2 3 )  f~(c) 
--C --C 

It is noteworthy tha t  the  matr ix  S with the elements Sn,nCc), where m, n = 1, 2 , . . . ,  is symmetric,  which follows 
from (20) and (23) and the  second integral of the Green theorem and depends only on the dimension of the 
contact region c. It is known [8] tha t  ~0(x, 0, c) = ~ and Ix[ < c, whence fro(c) = rcc2J1 (Amc)/(Amc) 
in the case of a simply suppor ted beam. 

Substi tut ing the  representations of the beam deflection (12) and of the  hydrodynamic  pressure (16) in 
the beam equation (1) and taking into consideration the orthogonali ty condition (15), Eq. (13), and formula 
(22), we obtain the infinite system of ordinary differential equations relative to the generalized coordinate: 

da 
a-t- = ( a t  + ~eS)-l(/~Dd + f); (24) 

dd 
- - =  a (25) dt - "  

Here a = (a l ,az ,aa, . . . ) t ;  d the additional vector, d = (d] ,dz ,da, . . . )  t, dn = (/~A4~)-](adn + bn); f = 
(f l(c), f2(c), f3(c),  .. .)t; I is a unit  matrix, and D is a diagonal matrix,  D = diag{A~, A2 ,4 Aa,. . 4  .}. The  right- 
hand side of system (24) and (25) depends on a, d,  and c and does not depend on t. Therefore, it is convenient 
to take the quant i ty  c as a new independent variable with 0 <~ c ~ 1. The differential equation for t = t(c) 
follows from (11), if one differentiates this equation with respect to c: 

dt 
d-~ = Q(c,  a, ~),  (26) 

where 

Q(c, a, fi) = c + (4~e/~r)(a, re(C)) (27) 
2 - (4m/~r)(fi, r (c) )  " 
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Here (a ,b)  is the scalar product of the vectors a and b, I'(c) = (Fl(c),F,. ,(c), . . .) ,  re(c) = 
(Fie(c), F2c(C), rsc(c),...), 

~/2 x/2 

rn(c) f Cn(csinO)dO, rn,(c) f ' " = = ~bn(csme) s inede .  
0 0 

Multiplying each equation of system (24) and (25) by dt /dc  and taking into account (26), we find 

da 
d--~ = F(c, d)Q(c, a, F(c, d)); (28) 

dd 
d"7 = - a Q ( c ,  a, F(c, d)). (29) 

Here F(c, d) = ( a I  + aeS(c))-l( /~Dd + f(c)). System (26)-(29) is solved numerically under the zero initial 
conditions 

a=O,  d = O ,  t = O  (c=O).  (30) 

It seems quite natural  to choose the quantity c as an independent  variable, because it corresponds 
to the structure of system (24) and (25). Introduction of the new unknown functions dn(t) instead of the 
derivatives hn(t), where n = 1, 2, 3 , . . . ,  solves the problem of the beginning of a numerical calculation: the 
right-hand parts in system (26), (28), and (29) are equal to zero for c = O. If the problem is solved in the 
initial variables, there are difficulties with the beginning of the calculation which are overcome if artificial 
methods are used [4, 9]. The  reason is that ,  for short times, c(t) = O(v/t),  w(x ,  t) = 0( t3/2) ,  wt = O(v/t), and 
wu = O(t-1/2), i.e., at the beginning of the impact,  the contact region extends with a very large velocity, and 
the accelerations of the elastic elements of the beam are unbounded.  On the other hand, t = O(c2), w = O(ca), 
wt = O(c), and wu = O(c-1) ,  but  dn = O(c s) as c --+ 0. It is seen that  the new unknown quantities, which 
are regarded as the functions of c, increase very smoothly, at the initial stage. In solving the Cauchy problem 
(26)-(30), the derivatives an(t)  are determined by formula (24). 

The replacement t --+ c is justified only under the condition that  dt /dc  > 0, which is obviously satisfied 
for small c. In numerical calculations, the sign of the right-hand side in (26) should be monitored and one 
should stop the calculation if Q = 0, which corresponds to an indefinitely high velocity of expansion of the 
wetted part of a body. The  unlimited growth of the derivative dt /dc  means tha t  the velocity of the contact 
points is decreased and can change the direction. Thus, the contact region decreases in dimension, which 
indicates a partial exit of the  body from water. Both cases, dt /dc  ~ 0 and d t /dc  --+ r are of undoubtful 
interest in connection with a s tudy of the influence of elastic effects on the process of impact on the liquid 
surface. 

In a numerical solution of the Cauchy problem (26)-(30), the finite number  of normal modes N is 
preserved, and it is assumed that  an - 0, d~ - 0 for n />  N + 1. Comparing the  calculation results obtained 
for various N, one can draw a conclusion on the number of modes that  is sufficient for estimation of the beam 
deflection, the velocity of its elements, and the distribution of bending stresses. For each of the enumerated 
characteristics, the  number  of modes permit t ing one to calculate it with required accuracy is particular. Strictly 
speaking, it is impossible to calculate the pressure in the contact region by the normal modes method. 

To explain the last s ta tement  and to give instructions concerning the choice of the quanti ty N, we 
shall consider the hydrodynamic part of the initial problem separately. The solution of the problem for the 
Laplace equation (5) in the lower half-plane with the mixed boundary conditions (6) and (7) allows one to 
determine the horizontal velocity component  in a liquid along the contact region [10]: 

~x(x, O, t) = 1, 0-2 
v ( ,o,t)do ( - c  < �9 < c). (31) 

--C 

The abbreviation V.p. means the Cauchy principal value of the integral. The derivative ~ , ( z ,  0, t) has 
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integrable singularities in the neighborhood of the contact points. With allowance for the expansion 

V / ~ ' - -  Cr 2 (7 X C 2 -- X 2 
- + 

~ - =  v ~ - ~ 2  ~ ( ~ - = ) v ~ - ~  2 

and the evenness of the vertical velocity component  qay(x,0,t) in =, formula (31) can be presented as follows: 

= / ~y(O., 0, t)  do" L ~ C 2  X 2 c ~0,(0", O, 1~ ) 
~,(=,o,t) = - ~ .  ~,/g--c-~_ =~_~ ~ + ,~ - V.p._of (,, 2~-~d~ (32) 

In the contact region, the  derivative ~y(z, 0, t) is limited, and the second integral in (32) therefore takes finite 
values for - c  <~ z <~ c. In particular,  as z --* c - 0 it follows from (32) the  asymptot ic  formula 

# 2  
2= 

f ~y(csinO, O,t)dO+O(v/-~c2-= 2) ( - c  < z < c) (33) ~,,(=,o,t) = ,~, /~ k =~ 
0 

with the separated singularity. The integral in (33) is calculated by means of conditions (7) and the 
representation (12): 

~oy(csin O, O,t) dO = - 7  + e ~,, a.(or.(c). 
0 n=l  

Its value coincides to within constant factor with the denominator  in (27). This means that  the singularity 
of the horizontal velocity component  of the liquid particles near the contact points vanishes as Q --. oo, i.e., 
when the wetted part  of the  body begins to decrease. 

The asymptot ic  formula (33) takes the form 

~ , ( = , 0 , t )  = A(t) = + O ( ~ 2  _ =2), 
2 o o  

A(t) = I--~e ~ h.(t)F.(c). 
71" n----1 

Similarly, for the velocity potential  and the pressure distribution in the contact region, we have 

~(=, 0, ~) = - A ( 0 V ~  2 - =2 + O([c 2 _ =213/2), 

pCz, O,t) = c6A(t) + O([c 2 _ z211/2 ) (-c < z < c). (34) 

The separated singularity of the velocity potential allows one to find the asymptotic behavior of the functions 
brL(t) as n ~ oo. Substituting (34) into (17), we obtain 

r 

b . ( t ) -  -A(t) / ~/c 2 - x2~b.(z)dz + .... 
--e 

The discarded terms are the integrals of the smoother functions and, hence, contribute to the higher order of 
smallness as n --* oo. For a simply supported beam, we have 

b.(t) = -A( t ) f , (e )[1  + o(1)1 (35) 

and b,(t) = O(n -s/2) as n --, oo. It is possible to show tha t  the last asymptot ic  formulas are valid with any 
at tachment of the beam ends. Differentiating (35) with respect to t, we find bn(t) = O(n -1/2) as n --, oo, and 
hence the series for pressure in (16) converges only conditionally. Therefore, it is difficult to determine the 
pressure within the framework of the normal modes method.  

At the same time, pressure is the important  characteristic of the impact process. If the calculations 
show that the pressure is negative on the greater part  of the contact region, it is impossible to consider 
further calculations to be adequate for an actual situation. In this case, cavitational phenomena should be 
taken into consideration. The  following approach is proposed to calculate the pressure distribution along the 
contact region: the velocity potential  of the wetted part of the plate is first calculated by (16), the asymtJtotic 
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formula (35) being used for improving the convergence of a series; the pressure is then calculated by numerical 
differentiation with respect to t with allowance for the Cauchy-Lagrange integral (4) and asymptotic formulas 
(34). 

Method of Numerical Solution of the Problem. With allowance for (12)-(15), the Eu]er equation 
(1) gives 

1 

+/3A4nan = J p(x, O, t)~bn(X) dx. (36) ot(~ n 

- 1  

If the right-hand sides in (36), where n = 1,2, 3 , . . . ,  are known, then each equation describes forced oscillations 
of the system the period of eigenoscillations of which is equal to t ,  = 2~rA~'2(a//3) 1/2. In a numerical solution 
of (36), for n = N the t ime step is At,  and hence it should be much less than tlv. With increase in N, the 
quantity iN decreases rapidly, and tN = O(N -2) as N -.* oo. Thus, the number of equations remaining in the 
system (26)-(29) in its numerical analysis cannot be arbitrarily great. It follows from (26) that the step in 
c should be of the order Ac ----- min(1/Q)At, where the value itself of min(1/Q) depends on the solution and 
is not known beforehand. It would be evident to solve numerically system (26)-(29) with a variable step in 
c, which is determined on the basis of the value of the right-hand side in (26) at the previous step. We note 
that the case Q --* 0 does not lead to a decrease in the step in c. 

However, more widespread are numerical schemes with a constant step relative to the independent 
variable. With a constant velocity of the impact, and here we consider only this case, it is difficult to expect 
that the wetted part  of a body will decrease after its initial growth. To estimate the value of rain(i /Q),  we 
take c(t) ~ cr(t), where c~(t) is the dimension of the wetted part of the plate, ignoring elastic deformations. 
It is known [6] that  c~(t) = 2t I/2. From here Q = c/2 and min(1/Q) = 2 for 0 ~< c ~< 1. We assume that 
Ac ---- At; even with a decrease in the rate of expansion of the contact region by a factor of two, the condition 
for the step Ac is satisfied. The more so if 6(t) > 5r(t). 

The Cauchy problem (26)-(30), in which N normal modes are preserved, an - 0, and dn - 0 for 
n /> N + 1, is solved numerically by the fourth order Runge-Kut ta  method with the step Ac = 0.01 �9 2 -M, 
where M is an integer such that  Ac ~< iN[L. and M/>  1. The quantity L, is equal to the number of the points 
which should be uniformly distributed on the interval (0, 21r) for a sufficiently accurate representation of the 
function sin x by its values in these points; the approximate value of the function between the control points 
is determined by the method of quadratic interpolation. In the calculations, it was assumed that  L. = 40, 20, 
10, and 5. If one assumes, for reasons of practice, that Ac cannot be less than 10 -4, the limiting number of 
modes N+ is such that  

AN+ ~< lO0(21r/L,)'/2(ot//3) '/4. (37) 

For example, in the calculations of [4], where a = 4.88.10 -2 and/3 = 1.8.10 -2, we have N+ = 32 for L, = 10. 
The number N+ increases as the  step Ac and/or the value L, decreases, but the calculations can become less 
accurate. It follows from (37) that  numerical calculations for small o~ (the wave impact on a plate made from 
a light material or of small thickness) are not effective. But it conflicts with the fact that  system (26)-(29) for 

= 0 is not degenerate if c > 0. Here we limit ourselves to a physical explanation of this conflict. For a~ = 1, 
the parameter (~ is equal to MB/(pL) and is proportional to the ratio of the total mass of a beam to the 
added mass of its high-frequency oscillations on the liquid surface. For light plates ((x << 1), the added mass 
i~ more important than their own mass and, hence, the form of Eqs. (36) does not correspond to the physics 
of the process. In this case, it is necessary to explicitly take into account the dependence of the right-hand 
sides in (36) on the generalized coordinates and their derivatives. Condition (37) does not hold true for plates 
made from light materials. For (~ <,< 1 and small c, an asymptotic analysis of the initial problem (1)-(8) is 
necessary. Generally, condition (37) is sufficient but not necessary. 

Condition (37) imposes the restriction on the maximum number of modes which can be preserved in 
system (26)-(29). However, the number of modes cannot be small, because it should be sufficient to represent 
the deflection and stresses in the beam to within good accuracy. The asymptotical behavior of the generalized 
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a.(t) coordinate as n ~ oo and for t > 0 is determined by the smoothness of the pressure profile on the plate 
as a function of the variables z and t. According to (34), the term of the asymptotics of pressure relative to 
the smoothness has the form 

C(O , ,  2 
p(x,o,0 = - +..., (38) 

where H(x)  is the Heaviside function, G(0) # 0, and c(t) = O(t 112) as t --* O. It is assumed that  G(t) and 
c(t) are smooth functions for t > 0. The term of the asymptotics in (38) has the same form as in the case of 
an undeformable plate, but the functions G(t) and c(t) in (38) are unknown beforehand. For a rigid plate, 
we have G(t) = 2 and c(t) = 2x//[6]. We denote the right-hand side in (36) by ap,(t). For the zero initial 
conditions, the solution of Eq. (36) is of the form 

t 

0 

where w~ = Bl~[a. We divide the integration interval in (39) into two parts ( 0, e . )  and (e., t), where ~. ~ 0 
and when -'-* ~ as n ---* cx~, and first consider the first integral. For small times (0 < r < e . ) ,  the elasticity of 
the plate can be ignored, and we have 

f p . ( r )exp( - iw.r )dr  ,,, 2~r f Jo(ZA.qT)exp(-iwnrldr 
o o 

for large n. The replacement of the integration variable r = a/w. allows one to write the last relation in the 
more convenient form 

p.(r) e x p ( - i w . r )  dr .~ - -  J0(/~V~) e x p ( - i a )  d~, 
Wn 

0 -0  

where # = 2(a/B) 1/2. The last integral has a finite limit as e .w .  ~ ~ ,  and hence 

f Pn (r)  e x p ( - i w . r )  dr  ..~ - -  exp[i(~2/4 - ~'/2)] ( n ~ ~ ) .  
0 

Thus, the contribution of the initial stage of impact, when t << 1, to the asymptotics of the coefficients a . ( t )  
has the order O(n -4 )  as n --, ~ .  Accordingly, h,~(t) = O(n -2) and ft.(t) = O(1), as follows from (39). 

Before analyzing the integral in (39) on the interval (e.,t), it is noteworthy that  the asymptotics of 
the coefficients pn(t) as n ~ ~ is determined by the term in formula (38): 

p . ( 0  " 

For t > e . ,  we have A.c(t) > A.c(e.) ,  where c(e.) -~ 2V~'~. for e .  << I. It follows that A.c(e.)  = O( ev~D'~.w. ) 
and tends to infinity as n ---* oo. Using the asymptotic expansion of the Bessel function Jo(x) for large values 
of the argument, we find 

2 V ~  G(t) cos(Mc(t) - ~'/4), p . C t ) ~  

p.(r) exp ( - iw . r )  dr ,~ exp (-i~r/4) 
V~tT) 

t 

+exp(i~r/4) f G('r) exp(-i[l,c('r)+w,,'rl)dz}. 
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We restrict ourselves to an analysis of the first integral 

t G(,) 
l , ( t )  = , , / - - ~  exp (- i[~o.r  - 1.c(r)])dr 

for n --* r the second integral is considered similarly. To determine the order of smallness I . ( t )  as n ~ oo 
and for t > e .  > 0, we integrate by parts. We have 

I"(*) = i [t c( ' )  vrff;5 = exp - a.c(,)D],. - i / a ,  t ec . } exp - 

l~rL 

Here the integral and out-of-integral terms for r = e .  have the same order O(w~le'gU4), and, for r = t, the 
order of the out-of-integrM te rm is equal to O(w~l). Hence, In(t) = O(n -2+'r) as n --* co; as for the value of 
3' is concerned, it is only known that  it is positive and does not exceed 0.5. As a result, we obtain 

-2~--2-cos . t  + u 2 ( ,  - ,  oo). (40) 

For large numbers, the asymptotical behavior of the generalized an(t) coordinates is determined by the 
conditions of the onset of the impact, when the pressure singularities in the contact points merge, and the 
pressure itself is unbounded, as follows from (38). We note that,  as n ~ oo, the order of smallness of the 
following term in the asymptotic formula (40) exceeds little the order of the term, and therefore, from the 
viewpoint of practical evaluation, formula (40) cannot be used for better convergence of series (12). Because it 
is required to determine not only the deflection of the plate, but also the velocities of its points and the bending 
stresses, the series for which converge slowly by virtue of (40), the number of modes N preserved in system 
(26)-(30) should be sufficiently large, but not more than N+, determined by inequality (37). The calculations 
were carried out for various N to establish the convergence of the numerical solution with increasing N. 

The Cauchy problem (26)-(30) is solved by the Runge--Kutta method with a constant step in c. In 
each step, it is necessary to calculate the elements of the matrix S, determined by formula (23). The very 
possibility of the solution of the initial problem by the normal modes method is mainly determined by how 
effectively the functions Shin(c), where 0 < c <~ 1, can be calculated. It turns out that  these functions can be 
expressed by the zero- and first-order Bessel functions: 

~ ' c  
S . m ( c )  - ~ 2  _ ~2 [a"J~ - a.,Jo(~.c)a~(~,.c)] (n # m), 

m 

S..(c) = ~ 2 2 J ~ ( ~ . c ) ] .  (41)  7c  [J~(~.c) + 

Polynomial approximations for the Bessel functions to within 10 -7 are well known [11], and the necessity of 
repeated calculations of the matrix S does not, therefore, impose significant restrictions on the number of 
modes to be preserved. It is of interest to note that all the elements of the matrix 5' with finite numbers have 
the same asymptotical behavior for small c, namely, S,,,,,(c) ,-, 7r for c --* 0. 

N u m e r i c a l  R e s u l t s .  To show the distinguishing features of the proposed algorithm, system (26)- 
(29) was solved numerically for the following values of the parameters: L = 0.5 m, R = 10 m, h = 2 cm, 
E = 21 �9 101~ N / m  2, V = 3 m/sec,  p = 1000 kg/m 3, Pb = 7850 kg /m 3, and b = 0.5 m. Here Pb is the density 
of the material of the plate and b is its width. The total mass of the plate of size I x 0.5 m and thickness 2 cm 
is equal to 78.5 kg and coincides in magnitude with MB. For ze = 1, we have ~ = 0.314 and/3 = 0.311. The 
scale of beam deflection equals 2.5 cm, the scale of bending stresses in the plate is 420 N / m m  2, the scale of 
pressure is 0.18 N / m m  2, and the scale of time is 0.008 sec. The plate with the cited parameters but of smaller 
thickness was used in experiments "[7] dealing with the influence of the elastic properties of a body on the 
process of water impact. The experimental conditions differed from those described above. In particular, in 
the experiment the plate thickness was 8 mm. For this value, the quantities cr and/3 are comparable with the 
linearization parameter  L/R = 0.05, and problem (1)-(8) can be investigated by asymptotic methods. 
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In addition to the direct solution of problem (1)-(8), we consider two approximate approaches within 
the framework of which the function c(t) was determined, ignoring the flexibility of the plate. The deformation 
of the free boundary of the liquid on impact was included in the first approach (the Wagner approach) and was 
not included in the second approach (the Kgrmkn approach). In the Kgrmgn approach, the contact points 
coincide with the points of intersection of the undeformable plate, y = 0, and - 1  < z < 1; for a moving 
undeformable boundary of the liquid, we have y = e ( - z z / 2  + t ) ,  and hence cK(t) = (2t) z/2' where z = +CK(t) 
sets the position of the points of intersection. Within the framework of the Wagner approach, the position of 
the contact points [z = :kcw(t)] is determined by Eq. (11), where one can set w(z, t )  - 0 in the case of an 
undeformable plate. It follows that  cw(t) = 2t z/2. Both approximate approaches require the solution of the 
Cauchy problem (26)-(30), where it is necessary to set Q = c/2 instead of (27) for the Wagner approach and 
(d = c for the Kgrmgn approach. The quantities calculated within the framework of the Wagner approximate 
approach have the subscript W, and those calculated within the framework of the Kgrmgn approach have the 
subscript K. 

The basic calculations were performed for L. = 20 and N = 15. The impact stage t,  during which the 
plate is wetted only partially and c(t.) = 1 is found equal to 0.36544. For comparison, we note that t ,w = 0.25 
and t.K = 0.5. It is seen that  the duration of the impact stage for a rigid plate is approximately 1.5 times 
shorter than that for an elastic plate. The flexibility of the plate increases the duration of the impact stage. 
The maximum deviations of the function t(c), 0 <~ c ~ 1, calculated for N = 1, 5, and 10, from its values for 
N = 15 are less than 1.8 �9 10 -2, 1.1 �9 10 -4, and 2.1.10 -5, respectively. Figure 2a shows the functions tK(c), 
t(c), and tw(c) (curves 1-3, respectively). Clearly, CK(g ) < c(t) < CW(t). For small t, the functions c(t) and 
cw(t) are close to each other, which indicates the possibility to ignore the elasticity of the plate at the initial 
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stage of impact. The velocity of the contact point 6(t) is calculated for various N of the preserved modes. The 
maximum deviations of the function ~(t), calculated for N = 1, 5, and 10, from its values calculated for N = 15 
are less than 0.53, 0.12, and 0.03, respectively. The calculation of the velocity ~(t) requires a larger number 
of modes compared to the calculation of the function c(t). The functions 6"w(t), 6(t), and ~K(t) (curves 1-3, 
respectively) are shown in Fig. 2b. We note that the velocity of the contact point tends to infinity as t ~ 0. 
The initial interval, on which the velocity of the contact points does not depend on the elastic properties of 
the plate, is very small. It is of interest to note that 5(t) is close to cg(t) at the initial stage. The evolution of 
the bending stresses in the center of the plate is shown in Fig. 3a for N = 5 and 15 (curves 1 and 2), in Fig. 3b 
for N = 10 and 15 (curves 1 and 2), and in Fig. 3c for N = 1 and 5 (curves 1 and 2). The maximum absolute 
values of the bending stresses are reached shortly before the end of the impact stage and equal approximately 
0.33, which corresponds to approximately 140 N/mm 2 in dimensional variables. It is important to note that 
the single-mode approximation with N = 1, which is often used in practical calculations, gives no correct idea 
of the evolution of bending stresses during the impact stage, but allows one to estimate these stresses at the 
end of the stage. 

Conclusion.  In the present paper, a numerical algorithm of calculating the deformations of an elastic 
plate in its impact on the curved surface of a liquid has been given. The algorithm allows one to perform PC 
computations. The test calculations have shown the effectiveness of the algorithm. The algorithm is intended 
for analysis of the role of elastic effects in the impact processes of a liquid and thin-walled structures of limited 
extension. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01767). 
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